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Bounds on the Bayes and Minimax Risk 
for Signal Parameter Estimation 

Lawrence D. Brown and Richard C. Liu 

A 3 r m - h  estimating the parameter 0 from a parametrized 
signal problem (with 0 5 0 5 L) observed through Gaussian 
white noise, four useful and computable lower bounds for the 
Bayes risk were developed. For problems with different L and 
Merent signal to noise ratios, some bounds am superior to the 
others. The lower bound obtained from taking the maximum of 
the four, serves not only as a good lower bound for the Bayes risk 
but also as a good lower bound for the minimax risks. Threshold 
behavior of the Bayes risk is also evident as shown in our lower 
bound. 

Index Terms-Bayes risk, minimax risk, thmhold effect. 

I. INTRODUCITON 
ONSIDER a system involving a transmitted signal of the 
form se(t) ,  0 I t 5 T ,  0 I 8 I L, and a received signal 

T ( t )  = se(t) + udb( t ) ,  0 I t I T ,  

C 
where b ( t )  denotes Brownian motion, so that udb(t)  is white 
noise with intensity U.  The form of s is-known but 8 is an 
unknown parameter to be estimated. If e =- 8(r(.))  denotes 
an estimator of 8, the squared-error is R(8, 8) = Ee(8 - 0)'. 
Of interest here will be bound-specially lower bounds-for 
the Bayes risk under a uniform prior, 

It is also of interest to study a discretized vers,>n of this 
compact support problem. Here, 8 is assumed to be restricted 
t_o the values 8 = 0, W, 2W, ., TW; T = [L/W]. (Note that 
8 is not restricted to take only the values 0, W, e , T,W.) Let 
BD(T)  and MD(T) denote the uniform prior Bayes risk and 
the minimax risk in this problem. Then, 

We also suspect that BD(T)  I B(L)  but we can only 
prove that BD(T - 1) 5 B(L) .  (See Lemma 4.1.) Finally, 
if BD(T, W) denotes this Bayes risk as a function of T and 
W then BD(T, W ) / W 2  is independent of W, i.e., 

BD(T, w > / w ~  = BD(T, w ) / w 2 .  (1-5) 

Section I1 of this paper studies in detail the situation when 0 
is known to take one of only two different values. This includes 
the discretized problem having T = 1. It is not difficult in this 
case to find the exact value of BD( 1) by numerical integration. 
However, it is also useful for other purposes (such as in Section 
111) to have a good analytic bound. This bound is derived in 
Section 11, and is compared with the exact values in Table I. It 
is also proved that the efficiency of the maximum likelihood 
estimator relative to the Bayes (and minimax) estimator in this 
setting varies between 50% and 75%. 

Section I11 builds on the results of Section I1 to produce 
bounds which are useful for the case where L/W or T 

are moderate (between roughly 1 and 10 to 100, depending 
on s). Section IV Dresents a different style of bound that 

Also of some inte_rest is the minimax risk, M ( L )  = 
inf6supo<,,,R(B, e). Note that any bound for B(L) is 
automaticallj; one for M ( L )  since 

B(L) I M(L) .  (1.1) is appropriate when L/W (or T )  is large. The asymptotic 
situation as L/W ---t 00 (or T + 00) is also studied. It 
is shown that the asymptotic efficiency in this sense of the 
maximum likelihaod estimator is 3/4. 

Many of the results in this paper deal only with the location 
model, where 

s, e g i e + w  
otherwise. 

the results of the preceding sections. All proofs are deferred 
= s(t - e> = { 0, (le3) to Section VI. 

The Threshold Phenomenon: Van Trees [13], Ziv and Zakai 
[14], and others have noticed a threshold behavior of the Bayes 
risk as the signal to noise ratio increases. This behavior is 
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and signal to noise ratio held constant. (It thus appears in the 
case of having to locate the center of moderately informative 
limited bandwidth signal transmitted somewhere in a large 
duration of time.) This behavior is seen graphically in Fig. 2 
for larger values of the signal to noise ratio (Q). This weaker 
threshold effect is predicted by common sense, and mentioned 
in Ziv and Zakai [14], but our results provide some theoretical 
and numerical validation. 

11. RIE Two POINT PARAMETER SPACE 
Suppose 8 is restricted to take one of the two values 8 = 0 

or 8 > 0. Then a sufficient statistic for inference about 0 is 

x = ( 2 h 2 ) - '  { / [ S B ~  ( t )  - so(t)]r(t) dt - Ti 

' J  
Ti = +;, ( t )  - &t)) dt .  

x2 = x2(el) = - 4a2 - 8 0 ( t ) ) ~  dt 

(2.1) 2 

Under 8i,  X has a normal distribution with mean (- l)i+' A, 
and variance 1 for i = 0, 1. 

For a location model with compact signal support of length 
w, 

where Q is the total-signal-to-noise-rate ratio. In particular, 
for s rectangular as in (1.3), 

Let B*(X) denote the Bayes risk for this problem as a 
function of X = A(&) when 81 = 1. Thus, B*(X) is the 
Bayes risk for the symmetric prior when X is observed with 
either X N N(-A,  1) or X N N(X, 1) and the loss from an 
estimate d is (0 - d ) 2  or (1 - d)2, respectively. The Bayes risk 
for general 81 and A = A(81) is then 82B*(X). This is also 
the minimax risk for this problem. 

Let @ and Q, denote the standard normal cumulative distri- 
bution function (c.d.f.) and density function respectively. Here 
is our basic two point bound. AU proofs appear in Section VI. 

Theorem 2.1: 

where 

This lower bound is balanced by the following slightly 

Theorem 2.2: 

cruder upper bound. 

The first four columns of Table I show selected values of 
B*(X), p(X) ,  bz(X), and the ratio b2(X) /B*(X) .  It is clear that 
b 2 ( X )  is a good lower bound. The numerical evidence is quite 
convincing that p(X)  is increasing in X and that b 2 ( X ) / B * ( X )  
is decreasing in A. (Table I is selected from a more complete 
table having X varying from 0 to 5.8 with interval length 0.1.) 
However, we have only been able to analytically prove the 
following. 

Theorem 2.3: p is increasing in X with 

5 L P'x,' I ;, 
P(0) = 59 I '  limx,,p(X) = a .  

The ratio b2 (A) /B* (A) satisfies 

limx,o(b2(X)/B*(X)) = 1, 
limx-+m(b2(X)/B*(X)) = 9 = 0.9549 * 
limxdmB* (A)/@(-X) = 2. 

, 

The numerical evidence, plus Theorem 2.3 convincingly 
shows that 

b2(4 3 
B*(X) - -7r 1 2 - > - = 0.9549 * * * . 

Since we have not been able to prove this, we note that 
Theorems 2.1-2.3 do establish that 

The maximum likelihood estimator (mle) 8, is a common 
multipurpose suggestion. In the present context it is given by 

ifx>o, 
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Hence, it has risk R(8, 8) = e@(-A)Aat both 0 = - B o  and 
e = el. Table I also conpins values of R(A) = R(e, e y e 2  = 
@(-A), and of B*(A)/R(A), which is the Bayes risk efficien- 
cy of the maximum likelihood estimator. The pattern apparent 
in the table is verified in the following theorem. 

Theorcm2.4: The Bayes risk efficiency of the mle, 
B*(A)/R(A) is increasing in A. It satisfies 

1 B*(A) 7r 

2 - R(A) - 4 
- < - < - = 0.7854 * * * 

with 

Since the Bayes and minimax risks are equal, Theorem 2.4 
also provides a statement about the minimax risk efficiency 
of the mle. The minimax risk efficiency of the mle in a 
somewhat different problem also involving the normal location 
family was studied in Donoho, Liu, and MacGibbon [6]. For 
their problem they found an efficiency varying between 415 
(approximately) and 1. 

The bound Q(-Q)/4 for &(A) is given in Ziv and Zakai 
[14]. Our bound b2 is better by a factor between 2 and 3. Values 
of B2 (A) have been computed elsewhere. For example, Casella 
and Strawderman [4], motivated by a somewhat different 
problem, computed values for A 5 1.7 (approximately). See 
also Kuks and Olman [lo]. 

111. BOUNDS FOR MODERME L OR 7 

A simple technical argument in Ziv and Zakai [14, following 
their (Sa)] converts two point bounds into bounds for arbitrary 
L or 7. This argument can be somewhat improved, and the 
two point bound of Section I1 is also better than what they 
used. The result is summarized in the following theorem both 
for the general model and for the discretized model. 

Theorem 3.1: In the local model (1.2), 

In the discretized model, 

W2B* (( Q/2)’/2). 
7 2  + 27 

BD(7) 2 - 3 

In both cases, replacing B* by the bound of Section I1 
results in a further lower bound, e.g., 

L 
B(L) 2 ~ - 1 1  e2b2(~(e)) de 

L 
= ~ - 1 1  e2p(x(e))s(-x(e)) de 

where 1/2 < i j  < 3/4. 

For a rectangular signal (1.3), substitution of (2.3) and (2.4) 
into (3.1) and integration by parts yields for L 2 W, 

B(L) 2 

L-’ { w3pw [fa (- [ ;I ‘ I 2 )  + [ 4 tK7 [;]I 
+,(L3 1 - W3)p ( [ 41 ‘I2) Q (- [;I ‘I2)}, 

where ;iw is defined by (3.1) with L = W and A as in (2.3), 
and 

is the c.d.f. of a xi variable. (This formula can also be made 
correct for L 5 W if in that case one substitutes L for W and 
QL/2W for Q/2. The term in (3.2) involving (L3 - W 3 )  thus 
becomes zero.) Note that since i j  < 1/2, the value 112 may 
be substituted for i j  in (3.2) tolget a more convenient lower 
bound. Also note that ijW < p ([Q/2]1/2) < 3/4. 

Chazan, Ziv, and Zakai [5] give a different bound in place 
of (3.1). Their bound has a different derivation. Unlike (3.1) it 
does not seem to readily generalize to situations not involving 
a uniform prior or a location family. In the case of the 
rectangular signal (and uniform prior) their bound is 

Note that as L + 00, the two bounds satisfy 

- N  (3‘2) 2p(Q/2)(as L + 00) - (3/2)(as Q --+ 00). (3.4) 
(3.3) 

but for L k e d  and Q + 00, (3.3) - (W3/L)(3/Q2) 
whereas (3.2) = O(l/Q3). (Actually, as Q + 00, B(L) N 

(W3/L)(4.80/Q2). See Brown and Liu [2].) Clearly, some- 
times one bound is preferable and sometimes the other. A 
numerical comparison we performed indicates that (3.3) is 
always better when L = W (or L < W), and (3.2) only 
dominates for L moderately larger than W ,  and Q not too 
small or too large. As suggested by the above and (3.4), the 
ratio of the two bounds apparently always satisfies 2/3 5 
(3.3)/(3.2) < 00. For these reasons we conclude that bounds 
in the style of Theorem 3.1 seem most suitable when L/W is 
moderate (certainly > 1) but not too large. (See Section IV.) 
Q should also be moderate. 

It is relatively straightforward to generalize Theorem 3.1 to 
treat other prior distributions. Thus, suppose 8 has an a priori 
distribution G, so that one is interested in the corresponding 
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Bayes risk 

B(G) = infg R(8, 8")G(d8). J 
IIfivo different bounds are possible. 

tribution G, 
Corollary 3.2: In the location model (1.2) with prior dis- 

B(G) 2 J J P  - c ) 2 B * ( w  - cI))G(WG(dc). (3.5) 

If G is symmetric about some value (e), then 

B(G) 2 e2B*(X(e))G(de). (3.6) J 
Analogous bounds are valid for the discretized model. When 

G is the uniform distribution, (3.6) is of course the same as 
Theorem 3.1. In the case of the rectangular signal, (3.6) is 
better than (3.5) (but (3.6)/(3.5) 5 2 )  unless Q is large and 
L is small. Since also, (3.5)/(3.6) 5 2, neither inequality is 
very good in this latter range, and neither is nearly as goo 
there as (3.3). 

IV. BOUNDS FOR LARGE L OR T 

. Consider, for simplicity, the rectangular model. As L t 00 

(with W and Q fixed) the bound of Theorem 3.1 yields only 
B(L)  2 (L2/3)B*((+/2) ' /2)  as L + 00. Since B*(a) < 1/4 
for Q > 0, this bound is less than L2/12. However, it is shown 
below that B(L)  - L2/12 as L t 00 for any fixed W and 
Q. (This result is implicit in Van Trees [13] and elsewhere.) 
Hence, Theorem 3.1 is not sharp, and a different style of 
inequality is needed to accurately describe the difficulty of 
estimating the location of a single signal over a wide range 

The bounds in this section begin with results for the 
discretized problem. These bounds for the discretized problem 
are then converted to bounds for the continuous problem by 
applying Lemma 4.1. 

Lemma 4.1: Consider a location model with compact signal 
support, [e, W]. Let T = [ L / W ]  2 2. Then, 

of e. 

Our first main result is in Theorem 4.2. Its proof (in Section 
VI) begins l i e  the proof of Theorem 2.1, but concludes rather 
differently. 

Theorem 4.2: For the discretized model, 

where Q is defined in (2.2). Consequently, by (4.1) and (4.2), 
for a location model with compact support 

(4.3) 

The bounds (4.2) and (4.3) take the asymptotic form 

Therefore, B(L) - L2/12, as previously claimed. (Trivially, 
B ( L )  5 L2/12 for all L.) However, the 0 ( 1 / ~ )  terms in 
(4.4) are not correct. The following stronger bound yields the 
correct term of O ( ~ / T )  for BD(7). We conjecture that the 
corresponding term is also correct for B(L) ,  but we have not 
been able to prove this. 

As it is shown in Fig. 1,  the bounds in Theorem 4.2 can 
sometimes dominate the lower bounds in Theorem 4.3 and vice 
versa, so both bounds need to be checked. Some numerical 
examples appear in Section V. 

Theorem 4.3: Let M = (T + 1) and A = eQ - 1.  Then, 

M 
W2-  

12 M + 2 A  
( M 2  - 1) 

M2-1 M 
2 Bo(.)> 7 W 2 -  M + 2 A  

A(M + 2((A + - 1)) 
* { ' +  ( M + 2 A ) 2  

A 2 ( A  4- 3)(M + 2( (A  + 1)3 - 1 ) )  
( M  + 2 4 3  

Consequently, 

L 2 ( ~ 2  - 1 )  r 
1 2 ~ ~  r + 2 A  

Lengthy (but routine) calculations following on (6.9) would 
yield an explicit upper bound for the O ( M - 2 )  term in (4.5). 
However the main Fterest here is in the asymptotic expan- 
sion discussed previously. This is formally described in the 
following corollary. 

Corollary 4.4: As T ---f 00 for fixed Q and W, 

(The corollary is proved by expanding both sides of (4.5) to 
terms of O ( T - ~ ) .  (4.6) yields the bound 

(eQ r - 1 )  + O(T-2)] .  

As mentioned, we conjecture that this bound is sharp to the 
terms of order O ( T - ~ ) . )  

shown explicitly, 
that as L --t 00 the Bayes procedure. 8Bayes converges to 
L / 2  in probabilit_y, uniformly for 8 E (0, L) .  Consequently 
SUPe,=(o, L)  R(8, OBayes) = L2/4 .  It can further be shown that 
M ( L )  w L2/4 as L + 00; we do not know what is the next 
term in the asymptotic expAansion. Similar calculations aly 
show that supeC(0, L) R(8, 0 )  - L2/3  as L ---f 00, where 
denotes the mle. ,Consequently, the asymptotic minimax risk 
efficiency of the d e  is 3/4. 

It is fairly evident from this, and can 
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Fig. 1. Maximum of the normalized lower bounds as a function of In (Q) where W = 1, * * * represents (3.2), . . .  
represents (3.3), - - -  represents (4.3), _ _ _  represents (4.6). AU of them were normalized by the factor Lz/12. 

V. NUMERICAL EXAMPLES to the Table I1 bounds for M = r + 1 since the bounds in 

A convenient way to compare lower bounds in Section 
I11 and IV for the discretized model is to multiply them 
by 12/W2(72 + 27) = 12/W2(M2 - 1). In this way, the 
normalized bound in Theorem 3.1 becomes 4B*((Q/2)lI2) < 
1, and the normalized bounds of Theorems 4.2 and 4.3 
converge to 1 as T + 00. A comparison of bounds for the 
continuous model with L = MW would be merely identical, 
except for the case M = 2 (L = 2W) where the bound 
(3.2) after renormalization would be slightly different than 
4B*((Q/2)lI2). See also Fig. 1. 

Van Trees [13], Ziv and Zakai [14], and others have iden- 
tified a threshold effect as Q increases. This behavior is 
displayed in Fig. 1. This figure shows six plots of the various 
lower bounds for B(L) in the rectangular case as functions of 

(4.3) and (4.6) derive from B ~ ( T  - l).) The graphs compare 
four normalized.bounds: (3.2) and (3.3) from Chazan, Ziv, and 
Zakai [5], (4.3) from Theorem 4.2, and (4.6) from Theorem 
4.3. 

The Bayes risk, B(L) ,  is of course larger than the maximum 
of the bounds in Fig. 1. However, it seems reasonable to 
presume that this maximum yields a moderately good idea 
as to the true behavior' of B(L).  We see from the figures 
that, especially for moderate to large T = L/W, the threshold 
certainly occus later and is presumably steeper than one might 
suppose on the basis of the previously published (3.3). Even 
though the computations for large L (e.g., L = 1000, 10000) 
are not graphed here, the new bound (4.6) is obviously the 
best for log (Q) < 2 (for details, see Brown and Liu [3]). The 
existence of a threshold as L increases for fixed Q, W has 

(Q). We take W = 1 with no real loss of generality. (This 
makes Q into the signal-rate-to-noise-rate ratio.) For easy 
comparison of the graphs with each other and with Table 11, we 
normalize the bounds via multiplication by 1 2 / ( ~ ~  - 1) where 
7 = L/W(= L). (Thus, the Fig. 1 bounds for 7 compare 

also been mentioned. (See, e.g., Ziv and Zakai [14, section 
IV], but very little numerical information seems to exist. This 
threshold behavior can be seen in the bound of Section IV. It 
is displayed in Fig. 2. Again we take W = 1. For six values 
of Q, this figure shows the value of the largest of the bounds 

' 
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TABLE 11 
COMPARISON OF NORMALIZED LOWER BOUNDS 

0.5 1.0 2.0 3.0 5.0 10.0 - - 
4B*((&/2)'/*) = 0.7959 0.6509 0.4496 0.3202 0.1692 0.0387 
" I  r" 
1v1 LJD 

A 0.6065 0.3668 0.1353 0.0498 0.0067 O.coO0 
B 0.5804 0.1526 0.0058 0.0003 0.0000 O.oo00 

2 

2 
A 0.79430 0.5926 0.2812 0.1158 0.0167 0.0001 

5 
B 0.8416 0.4232 0.0163 0.0007 O.oo00 O.oo00 

5 
A 0.9390 0.8534 0.6102 0.3438 0.0635 O.OOO4 

20 
B 0.9664 0.8851 0.1074 0.0293 O.oo00 O.oo00 

20 
A 0.9872 0.0668 0.8867 0.7237 0.2533 0.0023 

100 
B 0.9935 0.9826 0.7884 0.0272 O.oo00 O.oo00 
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(3.2), (3.3), (4.3), and (4.6), normalized via multiplication by 
12/(L2 - l ) ,  as a function of In (L). In order to obtain smooth 
interpolation in the figure, we graph (4.3) and (4.6) as though 
T = L/W(= L) rather than the true expression T = [L/W].  

- - (@(-AN2 
@(-A) + e4Q2@(-3A)' 

upon completing the square to evaluate the integral in the 
0 

Proof of Theorem 2.2: Note that for 0 5 a 5 1, (1 + 
a)-l _< 1 - a/2. Apply this inequality in the final integrand 

0 

denominator. This is the desired inequality. 

of (6.2) (with a = e-2xz) and evaluate to get (2.5). 

Proof of Theorem 2.3: Note that 

W. PROOFS 

Proofof Theorem2.1: Recall that under 8i, X - 
~ ( ( - i ) ~ + l x ,  I), i = 0, 1. Let el = 1. ~e cm [ii, p. 491 
yields 

dx. (6.1) e4X2@(-3~) - J,"e-2x*+(x + A) dz 

- Jre-2g+( q) dy 

+(x + X)+(x - A) 
+(E + A) + 4(x - A) - 

@(-XI JT4k + 4 
Simplify to get 

- 
dx 

(6.2) NOW, t ~ / a ~ a y l n [ + ( ( y  + X ~ > / X > ]  > o for y > 0, x > 0, 
and eF2Y is decreasing. Hence, standard mle arguments yield 
that e4x2'P(-3X)/@(-X) is decreasing. (See, e.g., Karlin [9].) 
It follows that p(X)  is increasing in A. Clearly p ( 0 )  = 1/2. 

e.g., Feller [7].) Hence, e4x2@(-3X)/@(-X) - 1/3 and 
limx+m p( A) = 3/4. This verifies all claims of the proposition 

= 1" 4(x + dx, 
1 + e-2Ax 

by symmetry. Now note that for positive functions h, g ,  

/ ( h ( t ) / g ( t ) )  dp(t) 2 

Hence, 
concerning p. 

It is evident from (6.2), that limQ+oB*(X) = 1/4. Hence, 
limx+o(b2(X)/B*(X)> = 1. For the other extreme, expand 
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Fig. 2. M a x i "  of the normalized lower bounds as a function of In ( L )  where the largest lower bound is (3.2), 

(3.3), (4.3). (4.6) is represented, respectively, by * * *, ........... and al l  were normalized by L2/12. 

( 1  + e-2xz)-' in the integrand of (6.2) to get m 
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Since C ~ 0 ( - 1 ) k / ( 2 k  + J )  = ~ / 4 .  This also shows that 
limx+,J3*(A)/@(-A) = n/4. - 0  

Proof of Theorem 2.4: From (6.2), 

B*(A) J,"(l+ e-2xz)-14(x + A) d x  -- - 
R ( - A )  J,"4(x + A) dz 

Now, (1 + e-2Y)-1 is increasing. Hence, B*(A)/k(-A) is 
also increasing, asAin, the proof of Theorem 2.3. The limiting 
values of B*(A)/R(A) have already been established in that 
theorem. 0 

. Proof of Theorem 3.1 : 
L 

B(L)  = i n f l i l  R(0, 6) de 

L 
= il t 2B*(A( t ) )d t .  

In the discretized model A( t )  = (Q/2)l12 for t = 
W, . , TW, and one similarly gets 

W2B* ( (Q/2)l12) .  
T~ + 27 

3 
=- 0 

Proof of CoroZZary 3.2: To prove (3.5), proceed similarly 
to the previous proof to write 

B(G) = //infl [:R(8, e') + 6) G(de)G(&) 
l l  

Proof ofLemm 4.1: Let w = L/T.  Then, W 5 w 5 
W + W/T and 

R(8, 8:)dO 
k=O 

= lm E R ( k w  + t ,  e') dt 1 
2 i/o TBg(r - 1, w ) d t  

= BD(T - 1, W )  = Bg(T - 1 ) W 2 / w 2  

by (lS), where B ~ ( T  - 1)  = B ~ ( T  - 1, W ) .  0 

Proof of Theorem 4.2: LeCam [ll, p. 491 can be ex- 
tended to yield the following general results. Let y E Y 
have density f e ( y )  with respect to v, 0 E R. Let G denote 
a prior distribution of 8 and let BE denote the Bayes risk for 
estimating 8 under squared error loss. Then, 

* G(d@)G(d t )v (dy ) .  (6.4) 

((6.4) is also valid for multidimensional 0 when 116 - <[I2 is 
substituted for (0 - ,$)2 in the formula.) 

To apply (6.4) to the discretized problem let Y = R'+l and 
v is a Lebesgue measure. The kth coordinate of Y is defined by 

Y k  = (fiAU2)-1 T ( t ) S ( k - i ) W ( t )  d t ,  k = 1, * * a ,  r + 1. 

with A2 = J s i ( t ) d t / 2 u 2  = Q / 2 ,  as in (2.2). It is easy to 
check that Y = (YI,...,Y,+~) is a sufficient statistic, and 
that when 8 = (k - 1)W then Y has a multivariate normal 
distribution with identity covariance matrix and with mean 7 
having 7)k = fix q d  = 0 for i # k. (To relate this to 
(2.1), note that T = 1 and X = (y2 - Y, ) / f i . )  Substitution 
in (6.4) and simplification yields 

J 

Now apply (6.3) Wectly to (6.5) and evaluate to get the 
equation found at the top of the next page. 

(In evaluating this equation, note that the integral evaluates 
to one if k # i, j (but i # j )  and to e 9  if k = i or j 
(but i # j ) .  The value when i = j is unimportant, for then 
(i - j ) 2  = 0.) This proves (4.2), (4.3) follows directly from 
(4.1) and (4.2). 0 

Proof of Theorem 4.3: In preparation for substitution in 
(6.5), fix i, j with i # j .  Let 

v ( y )  = ( M  + 2A) - l  

(3.6) is proved similarly. 0 
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- W2(? + 2r)(. + 1) - 
12( ( r  - 1) + 2eQ) * 

- *)w(y)dy 1 + Y(Y> (6.6) 

and note 

Note that 

since (1 + v3) is increasing in Y while (1 + v)-l is decreasing 
in U; and calculate that 

Substitute (6.7) into (6.6), then into (6.5), and simplify to ge; 
the lower bound in (4.5). 

For the upper bound, in place of (4.6) write 

J- dY 

and note, from (6.7), that J v3(y)w(y) dy 2 0. Then, 

< (M + 2A)e-fivk+Q/2, k = i, j. (6.8) 
1 + 4 Y >  - 

The expression for v4(y) can be expanded into a sum of 
several terms. By choosing k = i or j\ in (6.8) appropriate 
to the term involved and letting 2 N N(0 ,  1) one gets after 
some simplification that 

5 (M + 2A)-3{(M - 2)E(efiZ-Ql2 - 1)4 
+ 2eQE(efiZ-QI2 - 1)4 

This verifies the upper bound in (4.5). Equation (4.6) follows 
0 directly from (4.5) and Lemma 4.1. 
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